

By : Dr. A. K.Goudarzi D.V.M. Ph.D

6 Characteristics of the Animals

1. Animals are multicellular

Except for sponges, animal cells are arranged into tissues (a tissue is a group of cells alike in structure and function... such as muscle tissue or brain tissue). Tissues are necessary to produce organs and organ systems.

2. Animals are heterotrophs

- Heterotrophs consume their organic food.
- Heterotrophs are not capable of making their own foods.

3. Animals are motile

- Heterotrophy often requires motility to capture prey.
- Animals have motility during at least some part of their life cycle.

4. Animals are diploid

- The dominant generation in the life cycle is the diploid generation.
- Their gametes are heterogametes (different sizes); eggs are larger than sperm.
- Gametes are produced by meiosis.

Human Life Cycle

5. Animals have a period of embryonic development During embryonic development, cells become specialized and form two or three layers of tissues.

6. Animal cells lack cell walls

Therefore a skeleton is necessary to support the tissues of large animals.

The key to the success of the Animals is their Diversity-

- The Diversity of the Animals originates from the variations that occur in their:
- 1. Tissue Complexity
- 2. Body Symmetry
- 3. Cephalization
- 4. GastroVascular Cavity (GVC)
- 5. Coelom
- 6. Segmentation, and
- 7. Protostomes and Deuterostomes.

Tissue Complexity

- Most animals, collectively called the eumetozoa, have closely functioning tissues.
 - Diploblastic, have only two cell layers... like hydra and jellyfish.
 - Triploblastic and three cell layers.
 - The three "germ layers" are the ectoderm, mesoderm and endoderm.
- Another group of animals, the parazoa (sponges) are not organized into true tissues and lack organs.

Embryonic Germ Layers

- The three layers of tissues that become established during early embryonic development are called germ layers.
- They give rise to the body tissues.
- These layers are *ectoderm*, *mesoderm*, and *endoderm*.

Embryonic Germ Layers

Embryonic Germ Layers

- The <u>ectoderm</u> forms from the outer layer of cells. It gives rise to the skin and nervous system.
- <u>Mesoderm</u> forms between the ectoderm and endoderm. It becomes the muscles, connective tissues, skeleton, kidneys, circulatory and reproductive organs.
- The <u>endoderm</u> is made of cells that form the tube-like structure in the gastrula. These cells will form the lining of the gut, and the major organs are derived from it.

Types of Body Symmetry Body Shapes

Asymmetry

 Asymmetrical animals have no pattern of symmetry.

 The simplest animals (sponges) are asymmetrical.

Radial Symmetry

- The body parts of a radially symmetrical animal are arranged around a central axis so that each part extends from the center.
- Animals that exhibit radial symmetry tend to be *sessile* (immobile). Radial symmetry allows them to reach out in all directions.

Bilateral Symmetry

- One cut along the longitudinal axis will produce identical halves of a bilaterally symmetrical animal.
- Bilateral symmetry is best for motile animals.
- **Body Plan Includes**
- Anterior and Posterior Ends
- Dorsal and Ventral Surfaces
- "Right" and "Left" sides are mirror images

Evolution of Symmetry

The evolutionary sequence progressed from asymmetrical animals, to radial, and then to bilaterally symmetrical animals.

Evolutionary Changes in the Animal Body 1. Body Cavities

2. Cephalization

3. Segmentation

1. The Body Cavity

- The body cavity is a space that separates the gut and internal organs from the rest of the body.
- It isolates the internal organs from body-wall movements.
- It also bathes the internal organs in a liquid through which nutrients and wastes can diffuse.

Gastrovascular Cavity (GVC)

- GastroVascular Cavities (GVC) are areas where food is digested.
- If they have only one opening, the processing is limited.
- Two openings designate a digestive tract allowing food to be digested more thoroughly.

Arrangement of Ectoderm, Mesoderm, and Endoderm

An *acoelomate* animal does not have a body cavity.

Gut (endoderm) Mesenchyme Muscle layer (mesoderm) Ectoderm Acoelomate

A *pseudocoelomate* animal has a body cavity (called a *pseudocoelom*) located between <u>endoderm</u> and <u>mesoderm</u>.

Acoelomate

Pseudocoelomate

Coelomate

Gut (endoderm)

Pseudocoel —— Muscle (mesoderm)

Internal organs -

Ectoderm -

Pseudocoelomate

The body cavity of a *coelomate* animal (called a *coelom*) is located within the mesoderm.

Acoelomate

Pseudocoelomate

Coelomate

Gut (endoderm)

Internal organ

Muscle (mesoderm)

Ectoderm-

Coelomate

2. Cephalization The term "Cephalo" means "head".

- In animals with bilateral symmetry, there is a greater increase in the nerve tissue concentrated in the anterior end (the head) as animals increase
 Sensory lobe ventrolateral nerve
- For example, brains have formed with accessory organs for seeing, hearing, tasting, etc.

3. Segmentation

- Many animals have segmented body parts.
- In some cases the parts repeat over and over again, as with earthworms.
- In other animals, the segments are modified, such as with insects... they essentially have 3 segments.... the head, thorax and abdomen.

Cleavage Patterns

Embryonic Development

 During early development, the fertilized egg divides, or cleavages, to produce a solid ball of cells. Then, cell migration results in a hollow ball called a *blastula*.

Embryonic Development

- Some cells of the blastula migrate inward and form a three cell layered embryo called a *gastrula*.
- The opening is the *blastopore*.
- The internal cavity is called the *archenteron*.

Embryonic Development

- The Gastrula will become the *gut* (digestive tract) of the mature animal.
- In species that have a separate mouth and anus, the tube will eventually extend through the length of the embryo and fuse with the opposite side.
- One opening will become the mouth, the other will become the anus.

3 Major Differences between Protostomes and Deuterostomes

Characteristic	Protostome	Deuterostome		
Early	Slight Angle	Straight Down		
Cleavages	(spiral cleavage)	(radial cleavage)		
First Infolding	Mouth	Anus		
of Archenteron				
Coelom	Split in tissue at	Outpouching of		
develops from	sides of	archenteron wall		
	archenteron			

6 Major trend in Evolution

- 1. multicellularity
- 2. development of <u>tissues</u>, first none (sponges), then 2 (cnidarians), then 3
- 3. development of symmetry, first none (sponges), then radial (cnidarians), then bilateral
- 4. development of a <u>gut</u>, first none (sponges), then sac-like (cnidarians, flatworms), then complete
- 5. development of a body cavity, first none (flatworms), then a pseudocoelom (roundworms), then a coelom
- 6. development of <u>segmentation</u>; segmentation evolved in protostomes (annelids and arthropods) independently of that which evolved in deuterostomes.

Summary of Evolutionary Trends

Symmetry

- Asymmetry \longrightarrow Radial \longrightarrow Bilateral Gut No Gut \longrightarrow Saclike \longrightarrow Complete Coelom
- Acoelomate → Pseudocoelomate → Coelomate Embryonic Germ Layers

None \longrightarrow 2, (tissues, no organs) \longrightarrow 3, (tissues and organs)

Phylum (common name)	Tissue Complexity	Germ Layers	Body Symmetry	# of Gut Opening	Coelom	Embryonic Development
Porifera (sponges)	parazoa	-	asymmetry	0	-	-
Cnidaria (jellyfish, hydra)	eumetazoa	2	Radial symmetry	1	-	-
Platyhelminthes (flatworms)	eumetazoa	3	Bilateral Symmetry	1	acoelomate	-
Nematoda (roundworms)	eumetazoa	3	Bilateral Symmetry	2	pseudo- coelomate	-
Rotifera (rotifers)	eumetazoa	3	Bilateral Symmetry	2	pseudo- coelomate	-
Mollusca (clams, snails)	eumetazoa	3	Bilateral Symmetry	2	coelomate	protostome
Annelida (earthworms)	eumetazoa	3	Bilateral Symmetry	2	coelomate	protostome
Arthropoda (insects, spiders)	eumetazoa	3	Bilateral Symmetry	2	coelomate	protostome
Echinodermata (starfish, sea urchins)	eumetazoa	3	Radial Symmetry	2	coelomate	deuterostome
Chordata (fish, reptiles, birds, etc)	eumetazoa	3	Bilateral Symmetry	2	coelomate	deuterostome

